I Nr. 22
12. January 2016

Preprint-Series: Department of Mathematics - Applied Mathematics

Nystrom type subsampling analyzed as a regularized projection
Galyna Kriukova, Sergiy Pereverzyev Jr., Pavlo Tkackenko

APPLIEDMATHEMATICS

Technikerstralle 13 - 6020 Innsbruck - Austria
Tel.: +43 512 507 53803 Fax: +43 512 507 53898
https://applied-math.uibk.ac.at





Admin
am_pp_logo_01




Admin
am_pp_logo_01




Admin
am_pp_logo_01


GiJ PREPRINT


Admin
am_pp_logo_01




Admin
am_pp_logo_01


Our last assumption describes the regularity of ff in terms of source
condition concept that is fairly standard in the regularization theory [8]. In
the context of the learning theory this concept has been introduced in [2].
Within this concept, we assume that f! admits the representation

f1=(C)l o' € H, [k < R, (6)

where the function ¢ is operator monotone on [0,d], d > ||C||l3—ny, and
such that ¢(0) = 0 and ©? is a concave function.

As it has been shown in [9] an important implication of operator mono-
tonicity is that there is a number d, depending only on ¢ such that for any
self-adjoint operators C, C with spectra in [0, d] it holds

1P(C) = P(CV) -2 < dpp(IC = Crllrui)- (7)

Moreover, as a consequence of the concavity of p? we have (see Proposi-
tion 2 [9])

1T = P2 ) (C) s < 9 (ICY2(1 = P30, ) - (8)

Note that our assumption (6) generalizes Assumption 4 of [11], where
only the case of operator monotone functions ¢(t) = ¢, 0 < s < 3, has been
studied.

In the sequel we extensively use the following bounds (see, e.g., [2]) that
hold under the above assumptions with probability at least 1—¢ and quantify
the perturbation effect of random sampling:

=
—
©
S~—

||C - S;SZHHK‘)HK < d1,5 |Z|7 )

_1
15752/ =S, Y|k < das[2] 2, (10)
where d; 5 and dy s are of order O(log %) and depend only on K and p.
The following capacity independent learning rates have been proven in [2]
for KRR (1)

Theorem 1 ([2]). Consider a sampling space Z = X x [—D, D], where the
input space X C R is closed. Consider also a bounded and continuous kernel
K defined on X . If minimizer f7 of the expected risk E(f) over Hyx meets the
assumption (6), then for a = o, = ©7Y(|z|7V/2), O(t) = p(t)t, we have with
pbobability at least 1 — & that

157 = =0 (@ (el ) o al o ). ()
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Note tI}at for ¢(t) = t* the above theorem gives us the learning rate
@) (\z|2(8:r+21>) that matches the result obtained in seminal paper by Smale
and Zhou [14]. Moreover, for ¢(t) = ¢° the rate (11) can be thought of as the
limit case of the capacity dependent learning rate O (\z|_m> obtained

in [3] under the assumptions that the eigenvalues \; of the covariance operator
C have polynomial decay \; < ¢™* with u > 1.

Now we are going to prove that the same learning rate (11) can be
achieved in Nystrom type subsampling (2) if the approximation power of
P, is high enough.

Theorem 2. Assume the conditions of Theorem 1, and let (5) be satisfied.
If the size m = |z¥| of a subsampling z" is chosen such that

A <1 fO1 h(12172), 01 a(t) = w0V,

then with probability at least 1 — & we have
_ _ , 1
I = £l =0 (0 (02 ) ol 100 5 ) . 12)

where By = max{1, 51}, and By is the same as in (5).

Before proving this statement, we first comment on the computational
complexity of Nystrom approximation (2) with a subsampling size |z”| chosen
according to Theorem 2.

In view of the assumption (5) it is clear that the condition of the theorem

can be satisfied with .
|2"| = [0 (|2 71/?)) 2.

Let the assumption (6) be satisfied with
o(t) = ot ™ ) as t — 0, (13)
i.e. ©y/5(t) = o(t*/?#). Then
2|77 = 0(O (|2 717*)) = o(|2"| "),
which means that |z”|* = o(|z]) as |z| — oo.

7
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On the other hand, the computational complexity of (2) is of order
O (|z||z"|?) (see, e.g. [11]), and under the condition (13) it is subquadratic,
because |z||z”|* = o(|z|?).

Thus, under the conditions of Theorem 2 Nystrom subsampling has the
same learning rate as the one guaranteed by Theorem 1 for KRR based
on the whole sample z. Moreover, Theorem 2 allows an estimation of a
regularity range, such as (13), for which the above mentioned learning rate
can be achieved with subquadratic complexity. Note, that the condition (13)
is automatically satisfied with 5 > 1, for example.

Proof of Theorem 2. 1t is known (see, e.g. [9]) that the following inequality
holds true for functions ¢ mentioned in the assumption (6)

sup (1 — (o + ()] < hygp(a)at,q € 10,1/2], (14)

where h,, depends only on ¢ and q.
Note also that, by very definition, ©2(|z|~/) > ©(|z|7'/?), and there-
fore
A% =07 (12] %) < 07 (|2 1?) = ag. (15)

Moreover, without loss of generality we can assume that |z| is so large that
p(max{di s, ds,s}|z["V/?) < [max{dy s, das}], (16)

where d; 5,ds s are the numbers appearing in (9), (10). This is not a real
restriction, because the left-hand side of (16) tends to zero as |z| — co. A
direct implication of (16) is that with probability at least 1 — ¢

az = 07'(|z[ %) > max{[|C — Callmmc, ICfT = S Y Ik} (A7)
Consider the decomposition
fT=fe2, =01+ 02+ 03, (18)
where

Ul:fT_PZ”fTv
09 =Py 1 — (0] + Py C,P, ) 'P, C, P, f7,
03 = (] + P, CyP, ) {(PpCyP,u f1 — PuSLY),
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and we use notation C, = S;S,.
Now we are going to bound each term of (18). From (4)—(6) and (8) we
have

lo1ll, = 1CY2(1 = Py )e(C)o' |

< R||CY*(1 = Py ) [l | T = P )0(C) [l 25144
< RARp(A2) = RO j(A2)
< ROy (07 (|2 71/?)) = Rlz|™'/? (19)

To prove (12) we also need to bound o3, o3 in the norms || - ||k and || - ||,. We
start with the decomposition

09 = 021 + 022, (20)
where

091 = (I = (] + P C,P, ) 'P,C,P, ) p(P o C P o',
022 = (1= (] + P,vC,P, ) 'P,C, Py )02 1,
0221 = (Pw(C) — Pprp(C)Py + Poop(C)Pye
— @(P,CP,) + @(Py CPy) — (P CoPy ) ol

From (14) it follows that

lo2allk < Rsup|(1 = (an + )" 1)p(t)] < Rhyop(o)
t

Moreover,

loall, = [|CY 200k
< ||Cy*Ppoaillk + [ (C? = CY/*)Puoa |k,

and

”C;/ZPZVO-QJHK S H(PZUCZPZV)1/2O-2,1||K
< Rsup|(1 — (az + t)_lt)tl/Qw(t)| < Rhwéa;ﬂ@(az).
¢

Keeping in mind that v(t) = v/ is an operator monotone function, from (7),
(15) and (17), we have

[(CY2 = Cy*)Pproaillk < dijaC— Cz||;f<_m,< o2k < dijaRhyo0*p(0).

9
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All together this gives us the bound

loasll, = Oplam)ay’?) = O (so(@—luzr”?)) @—1<|z|—“2>) ~

To estimate ||o22]|, we need to bound ||o21||k. For this end, we use the
following known estimate (see Proposition 3 [9])

Hqugp(C)qu - SO(PZVCPZV)HHK‘YHK < CZ_@D‘P(HCI/Q(I - PZV)H%ﬁ(—)'H;()'
Moreover, (7), (8) and (15), (17) give us
lp(P2r CPu) = p(Por CoP o) [l < dp(|C = Collrem) < dppla),
and

P2 p(C) = Por o(C) P [l < [|0(C)(T = P )|l
= |1 = P2)(C) s < UICY2 (1 = Po) 3 ci2) < 9(0a).

Therefore, ||O'27271||K § R(d:o + dcp + 1)(,0(0@), and

| < lloz2zallk = Olp(az)).

< 1—
||<72,2||K > ||<72,2,1||K Slip| 1

Then, using the same argument as for ||os21]|, we obtain
Joaall, = O (1€ (1201217 ), and
loall, = O (@(@_l(lzl_m)) 9‘1(!Z|‘1/2)) :
Finally, we need to estimate ||os][,. Observe that
losll < sup |(a + t) [P CoPu f1 = P S; Y I
< (IPa(Cuf = SVl + [PurCaf — PGPy )

z

Then using (8)—(10) we obtain

P2 (Cof T = S;Y) Ik < daglzl ™,

10
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I[Py Cpf’ — PpCuPou fi|lk < [P (Cy — C)fT||k + [|[PorCfT — P CPo fT|k
([P (C = Co)Pur £l < 2L £kl ™2 + [ C(1 = Poo)(1 = Po)ip(Co
< das([2] 7 + Anp(A2)) < das(l2] ™2 + O1/2(07 (12 ™/2)) = 2ds /2] V2,
that allows us to write
losllk = O(ay 2]712) = O(a; (07 (]2 /%))

=0 ([0 (2l )] w0 (|2l *)0 (|21 1/%) = O(p(07 (|2 /2))).

Using again the same argument as for ||og ||, we obtain

losll, = O (90(@‘1(|Z|‘1/2))\/ @‘1(IZ|‘1/2)> :

Summing up the above bounds for ||o;||, i = 1,2,3, we prove the statement
of the theorem. O

3 Dealing with uncertainty in the sampling
size |z”|

Theorem 2 contains a recipe for choosing the subsampling size |z”| depend-
ing on the regularity of the target function and on the approximation power
of the corresponding projection method. Both of them, especially the first,
may not be exactly given in the form described above. Then several subsam-
pling sizes |z"'|,|z*?|,...,|z"| may be tried in Nystrom method, provided
that |z"| = 0(|z\1/2), 1=1,2,...,1. Of course, the number [ of possible size
candidates should not be too large to allow a calculation of all corresponding
approximants fg,u, fozm, ..., 22" with a subquadratic complexity. Nev-
ertheless, the question appears of how to select a good approximant among
the calculated ones, or how to use all of them. This question is similar to
the one in the regularization theory, where some strategy for aggregating all
calculated regularized approximants has been discussed recently [4]. In [7]
the strategy [4] has been adjusted in the context of learning and presented
in several versions.

According to the simplest version, the intention is to approximate the

vector ¢* = (¢}, ¢35, ..., ¢;) € R solving the following minimization problem
!
1= cifgp|| — min. (21)
i=1 o

11
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Recall that ||-||, is the norm of the Hilbert space L2(X, px). Therefore, (21)
is equivalent to the matrix problem

Gec = gT, (22)

where G and g' are respectively a Gram matrix and a vector of inner products
<" '>p in LQ(X» IOX)» i.e

o= ((utze)) o o=((rma)) e

3,=1

Note that neither Gram matrix G nor the vector ¢’ is accessible, since
the target function fT is unknown and the marginal probability distribution
px, which is involved in the definition of (-,-) , is not assumed to be given.

On the other hand, fT, Jazvis©=1,2,...,1, belong to the space Hx. That
is assumed to be continuously embedded into Lo(X, px). Then, for example,

<fT zz”2> <JKfJr JKfzaz”1> - <Cer zz”1>K

= ((C = C)f! i)+ (Caf T = S3Y . f2 i) + (S5Y, i)
(24)

In view of (9) the first term of the last equality (24) can be estimated as
follows:

’<<C C )fT zz”1 ‘ S HC - CZHHK—>'HK ’ HfTHK ) HfzzW K
< dys 27 [ £ M1

does not depend on |z, |z"

(25)

Moreover, the norm H f1 , and the norm

Ik

H fravi|| can be controlled. So, with a high probability it holds
(C=Cf' o) =0 (121772). (26)
In the same way, with the use of (10) we have
(CT =Y. S| = 0 (1277). (27)

As to the third term of the last equality (24), it can be directly calculated
from the training data since

||

(S2Y, frni e = (Y Saf i )giar = Zykfz i (1) (28)

12
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Therefore, from (24)-(28) we have with high probability

|=|

(1 fea), = 217D oS (@) + Oz %) i = 1,2, 0 (29)
k=1

Similar reasoning gives us the relations

2]
< o ;Zuj>p = 2| e @) fe s (20) + Oz 2) 0, = 1,2, L
k=1

(30)
In view of (29), (30) the matrix

|=|

G =12l Y fow (@) fi s (1)
k=1 .
i,7=1

and the vector z

|z|
~ -1
g= 12l ) yefom (@)
k=1 :
=1
can be considered as approximations of G and g' respectively. Moreover,
with probability at least 1 — ¢

le-¢c| -o (rzr”? log %) e =gl =0 (Iz\‘”z log %) .

With the matrix G in hand one can easily test whether or not G~! exists.
For sufficiently large |z| in case of positive test result a standard perturba-
tion argument (see, e.g. [7] for details) implies the invertibility of G™!, the
existence of the vectors ¢* = G~l¢f, ¢ = G~'§ and the bound

1
e = el = 0 (12l 1o 5 )

that holds with probability at least 1 — 9.
Consider now the function

l
fr =Y o,
1=1

13
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that solves (21), and its approximation

l
f =Y fom,
i=1

where ¢;, i = 1,2,...,[, are the components of the vector ¢ = é—lg. Since
zzvis L =1,2,... 1, are up to our choice, their norms can be controlled such
that
* 3 « * ~ —-1/2 1
|fr= 7| < vmax || gl e = el = © (121 10g 5 )
p i ’ P )

This gives us the following statement

Theorem 3. Assume that G is invertable and consider fz = 25:1 Cifaami;

c= (&), = G~1§. Then under the conditions of Theorem 2 for sufficiently
large |z| we have with probability at least 1 — 6

I
- 1
fr— Zci savi|| TO (!z\ Y2 10g 5) :
i=1

P
where a coefficient implicit in O-symbol may depend on the cardinality | of
the family { f5', } and on the distribution p, but does not depend on |z| and d.

|7

= min
p ci

~1/2

Note that in Theorem 3 the term O <]z| log %) is negligible because,

as we know from [3], |z|™"/% is of higher order than the best guaranteed
accuracy of a reconstruction of the target function fT € Hy in Lo(X, px)
from a training set z.

Thus, Theorem 3 tells us that the effectively constructed linear combina-
tion of the candidates f7,.;, i =1,2,...,[, is almost as accurate as the best
linear aggregator of them.

In the next section we present some numerical experiments illustrating

the performance of the aggregator f,.

4 Numerical experiments

For our first experiment we simulate data in the same way as in [17], where an-
other strategy for learning with big data called divide and conquer algorithm

14
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or distributed learning has been studied. Following that paper, we simulate
training data sets z = {(z;, y;) Y, |z| € {28,2°,...,213} from the regression
model y; = fT(z;)+&,i=1,2,...,|z|, where fT(z) = min{x, 1 — 2}, the ran-
dom samples x; are uniformly distributed over [0, 1], and the noise random
variables & are normally distributed with zero mean and variance o = 1/5.
This simulated problem can be seen as a supervised learning sigh X = [0, 1]
and px = Uni[0, 1].

As in [17], all kernel ridge regression estimators appearing in this experi-
ment are constructed in Hy with K(z,2') = 1 + min{z, 2’} and o = || */*.

We perform plain Nystrom subsampling and construct estimators f,.,,
Jotgn With |21] = |1z)”*°| and |z2| = ||z[*"°], such that the computa-
tional complexity of their construction is of order o(|z|), i.e. subquadratic.
Then, as has been discussed in Theorem 3, we construct the aggregator
fz = 61.sz’le’1 + é2fchzl’2'

The accuracy of fz is compared with the one of divide and conquer algo-
ithm [17]. That algorithm is based on splitting a large training set z into p
much smaller equal-sized subsets z;, 2o, ..., 2, |2;| = ||z| /p]. i =1,2,...,p;
then, each data set z; is used as a training set for constructing the mini-
mizer fg' of (1), where z is substituted for z; finally, the approximations f,

i=1,2,...,p, are aggregated linearly with equal coefficients (averaged) into
P
-1
za,p =P Z Z
i=1

In our experiment we compare the errors ‘fT — fzlls | fr—relli=1,2,

and HfT — Zoij. As in [17] we consider p = 1,4,16,64, and execute each
simulation 20 times to obtain average values of the errors. In Figure 1 we
plot these values versus the total number of samples |z|, where the values
corresponding to HfT — fz‘ | [T = fop||, and || fT = f2|| are respectively
depicted by dotted, dashed and solid lines.

Figure 1 shows that in the considered case the aggregated approxima-
tion fz outperforms all others, including the baseline KRR-solution f;; con-
structpumadyn32nhed for the full sample z. It is also interesting to note, that
the Nystrém approximation fg,.,, [2"*| = |z|*/*°|, performs poorly, but the

9

aggregated approximation f, automatically uses the best of available options.
In our second experiment we follow the paper [11], where the dataset
pumadyn32nh and cpuSmall have been used for an empirical study of the

15
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—8—m-=1
—8—m=4
m=16
—B—m=64 1
—-+— Nystrom1 | 4
—+4— Nystrom2
........ Naggr

4 L
10
102 10° 104

«
z,p

for p = 1,4,16,64 (solid), Nystrém solutions f;,., (|z"| = L|z\4/1oj) and
o o, |272] = ||2*’"°] (dashed) and aggregated solution f, (dotted)

z,zY2)

Figure 1: The mean square error between fT and the averaged estimate

Nystrom subsampling method. These datasets have been splitted in training
and test sets and Gaussian kernels K(z,2') = exp(— ||z — #'||* /202) have
been used in construction of f',.. Moreover, 20% of the training points have
been hold out for tuning such parameters as ¢ and «, and the performance
of the selected models has been reported on the test sets.

In [11] the performance has been measured in particular by comparing
the root-mean-square-errors (RMSE) of the approximations fg' .., fs,»» with
large |z"'| and small |z"2|.

It turns out that in the case of cpuSmall the effectiveness of the Nystrom
subsampling is not so high, since comparable values of RMSE of f7,.., [/
have been observed when both |z|, |z2], as well as |z|, are of order of 103.

At the same time, in the case of pumadyn32nh the same RMSE of 0.033

16
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has been observed for fg,.,, i = 1,2, with |z"*| = 1000 and |z"?| = 62.

Such different performances may hardly be explained by different capaci-
ties of the used hypothesis spaces Hg, because in both considered cases they
are generated by Gaussian kernels, and, moreover, the dimension of the input
space X for cpuSmall is smaller that in case of pumadyn32nh.

In our Theorem 2 one may find a plausible explanation of the above
mentioned behaviour of Nystrom approximations. Namely, that is because
of the regularities of the target functions corresponding to pumadyn32nh and
cpuSmall are described by source condition (6) with functions ¢ tending to
zero with essentially different rates. This is an example of how Theorem 2
can be used for interpreting empirical results and explaining limitations of
the Nystrom approach.

Now we use pumadyn32nh dataset for illustrating the performance of the
arrgegators fz. As in [11] we construct the approximants Joawi 1 = 1,2,3,
in Hk generated by the Gaussian kernel of width o = 2.66, and we use
a =107, |z| = 4096, |z"'| = 200, |z*2| = 60, |z"3| = 20. Table 1 reports the
performance of v, i =1,2,3, and z.

Approximant | RMSE

fz,z’/l 003381
For 0.03325
o 0.03442

Aggregator f, | 0.03325

Table 1: Performance of Nystrom approximants and their aggregator on a
testing set of 4096 data points from cpuSmall

As can be seen from Table 1, the aggregation approach described in Sec-
tion 3 again automatically uses the best of the available options and can
be recommended as a reliable strategy to be implemented together with the
Nystrom subsampling when dealing with uncertainty in the subsampling size.
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